Blocking Pore-open Mutants of CLC-0 by Amphiphilic Blockers
نویسندگان
چکیده
The blockade of CLC-0 chloride channels by p-chlorophenoxy acetate (CPA) has been thought to be state dependent; the conformational change of the channel pore during the "fast gating" alters the CPA binding affinity. Here, we examine the mechanism of CPA blocking in pore-open mutants of CLC-0 in which the residue E166 was replaced by various amino acids. We find that the CPA-blocking affinities depend upon the volume and the hydrophobicity of the side chain of the introduced residue; CPA affinity can vary by three orders of magnitude in these mutants. On the other hand, mutations at the intracellular pore entrance, although affecting the association and dissociation rates of the CPA block, generate only a modest effect on the steady-state blocking affinity. In addition, various amphiphilic compounds, including fatty acids and alkyl sulfonates, can also block the pore-open mutants of CLC-0 through a similar mechanism. The blocking affinity of fatty acids and alkyl sulfonates increases with the length of these amphiphilic blockers, a phenomenon similar to the block of the Shaker K(+) channel by long-chain quaternary ammonium (QA) ions. These observations lead us to propose that the CPA block of the open pore of CLC-0 is similar to the blockade of voltage-gated K(+) channels by long-chain QAs or by the inactivation ball peptide: the blocker first uses the hydrophilic end to "dock" at the pore entrance, and the hydrophobic part of the blocker then enters the pore to interact with a more hydrophobic region of the pore. This blocking mechanism appears to be very general because the block does not require a precise structural fit between the blocker and the pore, and the blocking mechanism applies to the cation and anion channels with unrelated pore architectures.
منابع مشابه
Amphiphilic Blockers Punch through a Mutant CLC-0 Pore
Intracellularly applied amphiphilic molecules, such as p-chlorophenoxy acetate (CPA) and octanoate, block various pore-open mutants of CLC-0. The voltage-dependent block of a particular pore-open mutant, E166G, was found to be multiphasic. In symmetrical 140 mM Cl(-), the apparent affinity of the blocker in this mutant increased with a negative membrane potential but, paradoxically, decreased w...
متن کاملGating Competence of Constitutively Open CLC-0 Mutants Revealed by the Interaction with a Small Organic Inhibitor
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl--sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while op...
متن کاملMolecular determinants of differential pore blocking of kidney CLC-K chloride channels.
The highly homologous Cl(-) channels CLC-Ka and CLC-Kb are important for water and salt conservation in the kidney and for the production of endolymph in the inner ear. Mutations in CLC-Kb lead to Bartter's syndrome and mutations in the small CLC-K subunit barttin lead to Bartter's syndrome and deafness. Here we show that CLC-Ka is blocked by the recently identified blocker 2-(p-chlorophenoxy)-...
متن کاملProbing the Pore of ClC-0 by Substituted Cysteine Accessibility Method Using Methane Thiosulfonate Reagents
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pore...
متن کاملCysteine Accessibility in ClC-0 Supports Conservation of the ClC Intracellular Vestibule
ClC chloride channels, which are ubiquitously expressed in mammals, have a unique double-barreled structure, in which each monomer forms its own pore. Identification of pore-lining elements is important for understanding the conduction properties and unusual gating mechanisms of these channels. Structures of prokaryotic ClC transporters do not show an open pore, and so may not accurately repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 133 شماره
صفحات -
تاریخ انتشار 2009